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Abstract

We present a new assessment of the Fermi-Löwdin orbital self-interaction correction

(FLO-SIC) approach with an emphasis on its performance for predicting energies as a

function of fractional occupation numbers (FONs) for various multielectron systems.

Our approach is implemented in the massively parallelized NWChem quantum chem-

istry software package and has been benchmarked on the prediction of total ener-

gies, atomization energies, and ionization potentials of small molecules and relatively

large aromatic systems. Within our study, we also derive an alternate expression for

the FLO-SIC energy gradient expressed in terms of gradients of the Fermi-orbital

eigenvalues and revisit how the FLO-SIC methodology can be seen as a constrained

unitary transformation of the canonical Kohn–Sham orbitals. Finally, we conclude

with calculations of energies as a function of FONs using various SIC-scaling

methods to test the limits of the FLO-SIC formalism on a variety of multielectron sys-

tems. We find that these relatively simple scaling methods do improve the prediction

of total energies of atomic systems as well as enhance the accuracy of energies as a

function of FONs for other multielectron chemical species.
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1 | INTRODUCTION

The prediction of molecular properties using density functional theory

(DFT)[1–3] continues to garner significant interest for studying large

chemical/material systems (i.e., up to hundreds of atoms) due to its

reasonable balance between computational efficiency and accuracy.

DFT, in principle, is an exact theory for obtaining the ground state

energy of a chemical/material system in terms of functionals of the

electron density in an auxiliary system of non-interacting electrons

(as opposed to other more computationally expensive approaches that

directly solve for the many-body wave function). However, the main

practical limitation of DFT is its reliance on approximate exchange-

correlation functionals that inherently introduce unphysical self-

interactions between electrons (a notorious example of this is the

dissociation of a H+
2 molecule, where many common exchange-

correlation functionals give unphysical results). These errors inher-

ently arise from an incomplete cancellation of electronic interactions

between the Coulomb and exchange-correlation term in approximate

functionals. More concretely, for the case of one-electron densities,

ρ(1), the expression for the energy, Exc, of the exact (yet still unknown)

exchange-correlation (xc) functional is given by

Eexactxc ρ 1ð Þ
h i

+ J ρ 1ð Þ
h i

=0: ð1Þ

In other words, the self-Hartree repulsion energy exactly cancels

out the self-exchange energy in an exact xc functional. However, for

approximate xc functionals, this cancellation is not perfect,[4–6] and

Received: 25 October 2019 Accepted: 19 January 2020

DOI: 10.1002/jcc.26168

1200 © 2020 Wiley Periodicals, Inc. J Comput Chem. 2020;41:1200–1208.wileyonlinelibrary.com/journal/jcc

https://orcid.org/0000-0001-5182-1480
https://orcid.org/0000-0002-3477-8043
mailto:bryan.wong@ucr.edu
http://wileyonlinelibrary.com/journal/jcc


the error due to this spurious noncancellation of energies is known as

the self-interaction error (SIE):

Eapproxxc ρ 1ð Þ
h i

+ J ρ 1ð Þ
h i

= ESIE ρ 1ð Þ
h i

, ð2Þ

where ESIE[ρ(1)] is the one-electron SIE. While Eqn. (2) was written in

terms of one-electron densities, SIE is present (and actually more del-

eterious) in many-electron systems and needs to be formally removed

from all approximate exchange-correlation functionals. However, it is

not straightforward to rectify these errors analytically for a given xc

functional, and SIE corrections to the total energy must be carried out

numerically in a systematic way. To further assess the effects of SIE in

many-electron systems, an in-depth study of energies as a function of

fractional occupation numbers (and its deviation from linearity) can

also provide additional insight into SIE, which is one of the primary

thrusts of this current work.

In 1981, Perdew and Zunger proposed an orbital-dependent

numerical scheme for the explicit orbital-by-orbital removal of SIE from

the total energy.[4] Within this procedure, spatially localized orbitals[7,8]

are constructed for the minimization of the PZ self-interaction correc-

tion (SIC) to the total energy. In the present study, we compute the

orbitals using the concept of the Fermi hole[9] to build spatially local-

ized Fermi orbitals in one step. These orbitals are characterized by

Fermi-orbital descriptors[10] (FODs) that can be interpreted as quasi-

classical positions of electrons. These localized orbitals are then sym-

metrically orthonormalized using a Löwdin orthogonalization approach.

A numerical optimization procedure (e.g., conjugate gradient,[11]

preconditioned conjugate gradient,[12–14] or BFGS[15–18]) is then used

to minimize the PZ-SIC energy as a function of Fermi-Löwdin orbital

densities after an SCF DFT energy is obtained. Throughout the optimi-

zation process, the Fermi-orbital descriptors are updated, which rede-

fines the Fermi-Löwdin orbitals associated with each electron in the

system. Originally proposed by Pederson and co-workers,[10,19,20] the

main advantage of this Fermi-Löwdin orbital self-interaction correction

(FLO-SIC) approach is its use of a constrained unitary invariant trans-

formation that also maintains size-extensivity.[20,21]

In the present article, we provide an analysis of our FLO-SIC

implementation with the following new features and additions: (1) we

re-visit the FLO-SIC methodology in the context of a constrained

unitary transformation and present an alternate expression for the

FLO-SIC energy gradient expressed in terms of gradients of the

Fermi-orbital eigenvalues; (2) we examine the performance of our

FLO-SIC methodology for the calculations of energies as a function of

fractional occupation numbers (FONs) on representative chemical sys-

tems such as H2, the carbon atom, and the diamine molecular cation;

and (3) we test the accuracy of our FLO-SIC methodology in conjunc-

tion with various SIC-scaling methods. The latter two features are the

most important results of our work since numerical tests of energies as

a function of FONs (and their deviation from linearity) provides a strin-

gent assessment of SIE, which has not been extensively studied with

the FLO-SIC approach in many-electron systems. Finally, all of our FLO-

SIC implementations are incorporated in the open-source, massively

parallelized NWChem quantum chemistry software package,[22] which

will be publicly available in the next release update.

2 | THEORETICAL METHODS

Before proceeding to our detailed comparison of SIC approaches, we

give a brief overview of the FLO-SIC formalism. Figure 1 depicts a

simplified algorithmic flowchart of our FLO-SIC methodology

implemented in the NWChem software package. The entire numerical

approach consists of the following steps:

• Step 1: A converged set of Kohn–Sham molecular orbitals

(KS MOs), {ψασ; α = 1, 2, ..., Nσ}, are used as inputs, where Nσ is the

number of electrons for each polarization, σ.

• Step 2: Next, we determine a set of initial FODs, a1σ ,a2σ , :::,aNσσf g,

using a Foster–Boys[23] localization algorithm. Note: the Foster–

Boys localization is only performed at the first iteration to generate

an initial guess, and subsequent iterations are carried out with a

numerical optimization algorithm.

• Step 3: A single-step localization of orbitals is achieved by con-

structing Fermi orbitals, F1σ ,F2σ ,…,FNσσf g , which are parametrized

by FODs.

• Step 4: We construct localized orthonormal Löwdin orbitals,

ϕ1σ ,ϕ2σ ,…,ϕNσσ

� �

, using the Löwdin symmetric orthogonalization

method.[24]

• Step 5: The PZ-SIC energy, EPZ-SICσ ρkσf g½ � , and the corresponding

gradient of the PZ-SIC energy, ramσ
EPZ-SICσ ρkσf g½ � , are computed

using orbital densities, ρkσ =ϕ
*

kσϕkσ , which depend on the previ-

ously computed Löwdin orbitals, ϕkσ.

F IGURE 1 Algorithmic flowchart for the Fermi-Löwdin orbital SIC

(FLO-SIC) methodology implemented in the NWChem software

package
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• Step 6: A PZ-SIC energy minimization is carried out for each polari-

zation using the L-BFGS-b[25–28] algorithm. Steps 2–5 are repeated

to achieve convergence of the PZ-SIC energy subject to a

predefined convergence threshold.

In the following subsections, we provide a brief derivation of the

quantities required in the FLO-SIC approach.

2.1 | Constructing Fermi–Löwdin orbitals

As mentioned in the previous section, the Fermi orbitals, Fiσ, are con-

structed from a given set of Kohn–Sham orbitals, {ψασ; α = 1, 2, …, Nσ},

and FODs, {aiσ; i = 1, 2, …, Nσ}. Mathematically, the Fermi orbital, Fiσ,

can be written as

Fiσ r;aiσð Þ=
ρσ aiσrð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρσ aiσð Þ
p =

P

Nσ

α=1

nασψ
*

ασ aiσð Þψασ rð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρσ aiσð Þ
p =

X

α

Fσiαψασ rð Þ, ð3Þ

where the Fermi orbital coefficient, Fσiα , and the gradient of the Fermi

orbital coefficient, raiσF
σ
iα, are given by

Fσiα =
nασψ

*

ασ aiσð Þ

ρσ aiσð Þ1=2
, ð4Þ

raiσF
σ
iα = F

σ
iα

raiσψ
*

ασ aiσð Þ

ψ*
ασ aiσð Þ

−

raiσρσ aiσð Þ

2ρσ aiσð Þ

� �

: ð5Þ

Equation (3) is an extension of a formal definition given by

Pederson et al.[10,19] to account for fractional occupation numbers,

nασ, which are used in our study of many-electron molecular

systems.

Assuming that the Kohn–Sham MOs, ψασ, are orthonormal, the

Fermi orbital overlap, Sσij , and gradient of the Fermi orbital overlap,

rajσS
σ
ij , are given by

Sσij = Fiσ jFjσ
� �

=
X

α

Fσ*αi F
σ
jα ð6Þ

rajσS
σ
ij = Fiσ jrajσFjσ

� �

=
X

α

Fσ*αi rajσF
σ
jα: ð7Þ

Upon diagonalization of the Fermi orbital overlap matrix, we

obtain the eigenvalues Qσ
α and the corresponding eigenvectors Tσ

αj:

X

j

SσijT
σ
αj =Q

σ
αT

σ
αi: ð8Þ

Using Eqn. (8) and the intermediate Löwdin orbitals, Tσ
α

	

	

�

,

Tσ
α

	

	

�

=
X

j

Tσ
αj F

σ
j

	

	

	

E

, ð9Þ

the Löwdin orbitals (LOs) are constructed from a Löwdin symmetric

orthonormalization,[29] which gives.[10,19]

ϕkσj i=
X

n

ϕσ
kn Fσn
	

	

�

,where ϕσ
kn =

X

α

Tσ
αkT

σ
αn

ffiffiffiffiffiffi

Qσ
α

p : ð10Þ

2.2 | Perdew–Zunger self-interaction

correction, EPZ - SIC

For a given exchange-correlation functional, the PZ-SIC expression

for the energy is given by

EPZ-SICσ = −
X

k

Eapproxxc ρkσ ,0½ �+
1

2

ð ð

drdr0
ρkσ rð Þρkσ r0ð Þ

j r−r0 j


 �

, ð11Þ

where Eapproxxc ρkσ ,0½ � is the energy obtained from an LDA or GGA xc

functional, and the orbital densities, ρkσ, are given by

ρkσ rð Þ=ϕ*

kσ rð Þϕkσ rð Þ: ð12Þ

It is worth mentioning that since the FLO-SIC methodology uses

a (constrained) unitary-invariant transformation of the Kohn–Sham

MOs, the following expression holds:

ρσ rð Þ=
X

k

ϕ*

kσ rð Þϕkσ rð Þ=
X

k

ψ*

kσ rð Þψkσ rð Þ, ð13Þ

where ψkσ(r) denotes a canonical Kohn–Sham MO, and ϕkσ(r) denotes

a localized Löwdin MO. Most importantly, the expression in Eqn. (13)

implies that the ground state energy, including any other quantity

dependent on the electron density, ρσ(r), will be invariant under uni-

tary transformations.

2.3 | Gradient of EPZ-SICσ

We present a new analytical expression for the FLO-SIC energy gradi-

ent expressed entirely in terms of gradients of the Fermi-orbital eigen-

values. In 2015, Pederson and co-workers presented expressions for

the gradient of EPZ-SICσ with respect to the FODs:

ramσ
EPZ-SICσ =

X

Nσ

k =1

X

Nσ

l=1, l 6¼kð Þ

λkσkl Δ
!1σ

lk,m +Δ
!3σ

lk,m

� 


, ð14Þ

where Δ
!1σ

lk,m and Δ
!3σ

lk,m are vector quantities defined as

Δ
!1σ

lk,m =
X

αβn

ramσ
Sσnm

� �

Tσ
αmT

σ
βn

Tσ
αkT

σ
βl−T

σ
αlT

σ
βk

ffiffiffiffiffiffiffiffiffiffiffiffi

Qσ
αQ

σ
β

q , ð15Þ
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Δ
!3σ

lk,m = −
1

2

X

αβn

ramσ
Sσnm Tσ

βnT
σ
αm + Tσ

βmT
σ
αn

� �

Tσ
αkT

σ
βl−T

σ
αlT

σ
βk

� �

ffiffiffiffiffiffi

Qσ
β

q

−

ffiffiffiffiffiffi

Qσ
α

p

ffiffiffiffiffiffiffiffiffiffiffiffi

Qσ
αQ

σ
β

q

ffiffiffiffiffiffi

Qσ
α

p

+
ffiffiffiffiffiffi

Qσ
β

q
� � : ð16Þ

We have derived a new expression for Eqn. (14) that involves gra-

dients of Fermi orbital eigenvalues, summarized in the following

equations:

ramσ
EPZ-SICσ =

X

k > l

λkσkl −λ
lσ
lk

� �

Δ
!1σ

lk,m +Δ
!3σ

lk,m

� 


, ð17Þ

with Δ
!1σ

lk,m, Δ
!3σ

lk,m, and λkσlk given by

Δ
!1σ

lk,m =
1

2
ϕσ
km

X

β

ramσ
Qσ

β
ffiffiffiffiffiffi

Qσ
β

q

Tσ
βl

Tσ
βm

−

1

2
ϕσ
lm

X

β

ramσ
Qσ

β
ffiffiffiffiffiffi

Qσ
β

q

Tσ
βk

Tσ
βm

ð18Þ

Δ
!3σ

lk,m = −
X

β > α

Tσ
αkT

σ
βl−T

σ
αlT

σ
βk

� �

ffiffiffiffiffiffi

Qσ
β

q

−

ffiffiffiffiffiffi

Qσ
α

p

ffiffiffiffiffiffiffiffiffiffiffiffi

Qσ
αQ

σ
β

q

ffiffiffiffiffiffi

Qσ
α

p

+
ffiffiffiffiffiffi

Qσ
β

q
� �

× Tσ
αm

ramσ
Qσ

β

2Tσ
βm

+ Tσ
βm

ramσ
Qσ

α

2Tσ
αm

" #

,

ð19Þ

λkσlk = ϕlσ jV
SIC
kσ jϕkσ

D E

, ð20Þ

where ϕσ
km was previously defined in Eqn. (10), and the SIC potential,

VSIC
kσ , is given by

VSIC
kσ =

δEPZ-SIC

δρkσ
= −

δEapproxxc ρkσ ,0½ �

δρkσ
−

ð

dr
ρkσ r0ð Þ

j r−r0 j
, ð21Þ

and ramσ
Qσ

α is

ramσ
Qσ

α =2T
σ
αm

X

j

ramσ
Sσjm

� �

Tσ
αj: ð22Þ

The most salient feature of this mathematical formulation is

that EPZ-SICσ in Eqn. (17) can be expressed in terms of gradients of

Fermi orbital eigenvalues, ramσ
Qσ

α . In other words, one can, in princi-

ple, minimize the PZ-SIC energy via a minimization of the set of all

Fermi orbital eigenvalues[30] Qσ
α;α=1,2,…,Nσ

� �

. This result is particu-

larly interesting since the gradients of the Fermi-orbital eigenvalues

do not depend on the computationally expensive evaluation of two-

electron integrals and, therefore, could possibly be used to acceler-

ate further FLO-SIC calculations (which we save for future work).

Nevertheless, it is worth mentioning that while this approach avoids

the computation of two-electron integrals, the minimization of

the set of all Fermi orbital eigenvalues is a multiobjective optimiza-

tion problem[31–33] (compared to the original single-objective

optimization problem of Eqn. (17)), which can pose additional

numerical challenges.

Previous studies have used a variety of approaches for minimizing

the SIC energy, which include gradients of the SIC energy with

respect to (a) elements of a unitary transformation,[6,34] (b) Kohn–

Sham orbital coefficients,[35] and (c) Fermi-orbital descriptor posi-

tions.[19] It is worth mentioning that the number of minimization

parameters (N2) in the first two approaches is greater than the number

of parameters (3N) used in the FLO-SIC energy minimization, making

them more computationally expensive. The connection between FLO-

SIC and the other approaches is not trivial to establish. For a con-

strained unitary transformation defined as UσCσ = (LσFσ)Cσ, where Lσ

and Fσ are the Löwdin and Fermi orbital coefficient matrices, Eqn. (17)

can be written as follows:

∂EPZ-SICσ

∂akσ
=
X

ij

∂EPZ-SICσ

∂uσ
ij

∂uσij

∂akσ
=0, ð23Þ

with
∂uσ

ij

∂akσ
given by

∂uσij

∂akσ
=
X

n

∂ϕσ
in

∂akσ
Fσnj +ϕ

σ
ik

∂Fσkj

∂akσ
, ð24Þ

Equation (23) shows the relationship between the FLO-SIC

energy gradients,
∂EPZ-SICσ

∂akσ
, and the SIC energy gradient, which is depen-

dent on the N2 elements of the unitary transformation matrix from

previous studies. A particular solution of Eqn. (23) is

∂EPZ-SICσ uσij akf gð Þ
h i

∂uσ
ij

=0, ð25Þ

which results in N2 nonlinear equations for 3N unknowns, {ak}. Never-

theless, Eqn. (23) is a nonlinear system of 3N equations for 3N

unknowns that may be satisfied by more than one single configuration

of FODs, {ak}. In other words, this implies that several configurations

of FODs, {ak}, can give the same SIC energy, which we and others

have also found in previous work.[36]

2.4 | Scaling factors for EPZ-SICσ

Following Vydrov and co-workers,[35,37] we also tested the usage of

scaling factors to remedy over-corrections introduced by the PZ-SIC

energy expression for many-electron systems:

EPZ-SICσ = −
X

i

Xk
iσ Eapproxxc ρiσ ,0½ �+

1

2

ð ð

drdr0
ρiσ rð Þρiσ r0ð Þ

j r−r0 j


 �

: ð26Þ

The scaling factor, Xk
iσ , must equal unity for one-electron systems

or satisfy 0≤Xk
iσ ≤1 for the multi-electron case. In this work, we tested

two scaling factors, denoted by Xk and Xm that satisfy these criteria.

The Xk scaling method uses an Xk
iσ with the following form:
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Xk
iσ =

1

niσ

ð

τWσ
τσ

� 
k

ρiσ rð Þdr, ð27Þ

where τσ is the noninteracting kinetic energy density with polariza-

tion σ:

τσ rð Þ=
1

2

X

i

niσ rϕiσ rð Þj j2, ð28Þ

and τWσ is the von Weizsäcker kinetic energy density for polariza-

tion σ:

τWσ rð Þ=
rρσ rð Þj j2

8ρσ rð Þ
, ð29Þ

where niσ is the occupation number and k is a non-negative real

number.

The Xm scaling method utilizes a Xm
iσ of the form

Xm
iσ =

1

niσ

ð

ρiσ

ρσ

� 
m

ρiσdr, ð30Þ

where m is a non-negative real number. Since the Xk method requires

gradients of the charge densities, it is more computationally expensive

than the Xm scaling method. It should be noted that most xc func-

tionals do not need corrections in the uniform density limit; further-

more, the Xk scaling method vanishes for uniform densities, whereas

the Xm scaling method is not guaranteed to vanish, making the former

method more convenient. In this work, we test the performance of

these scaling factors in the computation of relative energies of atoms

ranging from He to Ar, as well as for energies as a function of FONs

for the carbon atom and the diamine cation molecule, which was

recently examined by us as a prototypical chemical system to test

density functional methods.[38]

3 | RESULTS AND DISCUSSION

To validate our custom implementation of FLO-SIC in the open-

source, massively parallelized NWChem software package, we first

carried out a series of benchmark calculations on total energies,

atomization energies, and ionization potentials of several small mole-

cules. These calculations were compared against a different imple-

mentation of FLO-SIC in the literature, and both approaches were

found to be in excellent agreement with each other. A detailed

description of these calculations and benchmarks is given in the

Supporting Information.

In the following subsections, we discuss the accuracy of the vari-

ous SIC-scaling methods for the He–Ar atomic systems, which are

compared against other benchmark calculations.[39] We conclude our

discussion with an analysis of fractional occupation numbers for

many-electron systems such as H2, the carbon atom, and the

transition-state geometry of the diamine molecular cation to assess

the performance of the FLO-SIC formalism in conjunction with the

various scaling methods.

3.1 | SIC energies for atomic systems

In this section, we present total energies for atomic systems from

Helium to Argon using the Perdew–Burke–Ernzerhof (PBE) xc func-

tional[40,41] and various SIC corrections to this GGA reference state.

Figure 2 plots the relative energy per electron, (E − Eref)/Z, where E is

the total energy obtained with various methods (such as PBE,

PBE/SCF-SIC, or PBE/FLO-SIC), Eref are reference energies from

highly accurate benchmark values,[42,43] and Z is the atomic number.

The fully self-consistent PBE/SCF-SIC calculations were computed

with the ERKALE[6] software package, and the PBE and PBE/FLO-SIC

energies were obtained from our own NWChem implementations and

modifications. As an extra check on our results, we have verified that

our NWChem-computed PBE energies coincide with the PBE energies

obtained from the ERKALE software package. Although our FLO-SIC

implementation was only carried out in a post-SCF mode, Figure 2

demonstrates that the FLO-SIC scheme still gives accurate results

compared to the more computationally expensive, self-consistent PZ-

SIC approach. Since PBE/FLO-SIC progressively gets worse at

predicting accurate total energies as Z increases, we tested the perfor-

mance of various SIC-energy scaling factors (i.e., setting k = 1/2,

1, and 3 within the Xk scaling method) to understand their perfor-

mance on softening these overcorrections. Interestingly, we find that

the scaling factor has a more significant effect on systems with atomic

numbers larger than 5, with the best overall results obtained with

k = 3. Additional validation tests of this approach and corresponding

plots with the Xm scaling method for m = 1/2, 1, and 3 are given in the

Supporting Information.

3.2 | Energy versus FONs for H2, the carbon atom,

and the diamine cation

One rigorous diagnostic to assess self-interaction errors (SIE) in an

exchange-correlation functional is to check the energy linearity theo-

rem for fractional occupations[44–46]:

E N+ δN½ �= E N+1½ �−E N½ �ð Þ δN−1ð Þ+ E N+ 1½ �, ð31Þ

which shows that the total energy is linear as a function of the frac-

tional occupations δN. In the interval [N, N + 1] the slope ∂E/∂n is the

negative of the electron affinity, −EA, which is the difference between

the energy of an anion and a neutral system, EN + 1
− EN. Poorly

behaved functionals such as LDA are “concave up” in the E versus

N plot, whereas the Hartree-Fock approach shows a “concave down”

behavior. In contrast, range-separated functionals[47–52] show a

straight-line behavior,[47] which nearly satisfies Eqn. (31) with a slope

that approximates the electron affinity. For our study on FONs, we

also confirmed that the total number of electrons (including fractional

1204 AQUINO ET AL.



numbers) were conserved during the FLO-SIC numerical procedure.

Specifically, the total number of electrons is given by

N=

ð

ρσ rð Þdr=

ð

X

μν

Pμνψμ rð Þψ*

ν rð Þdr, ð32Þ

where Pμν is the density matrix and ψμ(r) and ψν(r) are Kohn–Sham

orbitals. Substituting the Fermi-Löwdin density matrix,

PFLμν =
P

αnασ CFL,σ
αμ

� �

CFL,σ
αν

� �*

where Cαν are orbital coefficients, for Pμν

in the expression above gives

N=
X

α

nασ

ð

X

μν

CFL,σ
αμ

� �

CFL,σ
αν

� �*

ψμ rð Þψ*

ν rð Þdr=
X

α

nασ , ð33Þ

where we have used the fact that the Fermi-Löwdin orbitals are

orthogonal in the last step, that is, the total number of electrons, N, is

the summation of the occupation of each orbital.

Figure 3 shows our results for the relative energy of H2 as a func-

tion of the fractional electron number (n + δn) at various levels of the-

ory. The benchmark reference is a straight line obtained from the

highly accurate, wave function-based CCSD(T)/aug-cc-pVTZ calcula-

tions. The results obtained with LC-BLYP/aug-cc-pVTZ and LDA-

FLO-SIC/aug-cc-pVTZ agree very well with the CCSD(T) results,

which demonstrate an accurate removal of the SIE; in contrast, the

LDA/aug-cc-pVTZ results show the expected “concave up” behavior.

Figure 4 depicts various E versus N curves for the carbon atom, where

our benchmark reference is the dashed black line with a slope equal

to –EA = –1.26 eV obtained from experiment.[53] The E versus N cur-

ves obtained with LDA and PBE are “concave up,” and the LC-BLYP

functional yields a straight line with a slope slightly different from the

experimental benchmark. For comparison, we have also included E vs.

N plots obtained with various SIC approaches including LDA/FLOSIC,

PBE/FLO-SIC, and the fully self-consistent PBE/SCF-SIC from Vydrov

et al.[35] Among these various “uncorrected” SIC methods, we find

that LDA/FLO-SIC yields the best results, although it exhibits a curva-

ture that is still slightly over-localized. In the same plot, we also tested

the performance of the Xk scaling method (with k = 1) for LDA/FLO-

SIC and PBE/FLO-SIC, which slightly improves the linearity and slope

of their “uncorrected” counterparts.

To analyze the FLO-SIC scaling trends more closely, the left panel

of Figure 5 depicts deviations from linearity for PBE/FLO-SIC in con-

junction with the Xk scaling method for k = 0.2, 0.5, and 1. Comparing

these various curves, we observe a slight improvement for k = 0.2.

Similarly, the right panel of Figure 5 shows deviations from linearity

for LDA/FLO-SIC with the Xk scaling method for k = 0.1, 0.2, 0.5, and
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1, and we observe the best results for k = 0.1. The Supporting Infor-

mation contains additional E vs. N and deviation-from-linearity plots

for the Xm scaling method for LDA, LDA/FLO-SIC, PBE, and

PBE/FLO-SIC.

As a final application of our FLO-SIC approach for energies as a

function of FONs, we analyze the electronic structure of the transition

state of the N,N0-dimethylpiperazine (DMP) diamine molecular cation

(DMP-TS), which was recently examined by us as a prototypical chem-

ical system to test density functional methods.[38] Figure 6 shows

E versus N plots for the CCSD-optimized transition-state geometry of

DMP-TS for different levels of theory with the aug-cc-pVDZ basis set.

Our benchmark reference is the dashed line whose slope is obtained

from CCSD(T) energies for the anion and neutral molecule, EN + 1 and

EN, respectively. The range-separated LC-BLYP is almost indistinguish-

able from the reference, whereas the PBE functional shows a slight

“concave up” curve. The PBE/FLO-SIC curve exhibits a good linearity

between 63.4 and 64; however, in the interval between 63 and 63.4,

we encountered convergence problems during the SIC optimization,

which may be due to an improper choice of initial FODs obtained with

our Foster–Boys localization algorithm. While these convergence
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problems manifest themselves as a “bump” in the energy versus FON

curve, it is important to note that the FLO-SIC energy gradients for

those problematic points are still extremely small. Specifically, the

inset of Figure 6 depicts a plot of the FLO-SIC gradient as a function

of FONs, and all values of the gradient are extremely small and within

10−3 to 10−5. In addition, we also examined PBE/FLO-SIC in conjunc-

tion with the Xk scaling method (using k = 1), which shows a slight

improvement over the uncorrected PBE/FLO-SIC values (i.e., the

curve within the 63.8–64.0 interval moves closer to the reference

CCSD(T) straight line. Figure 7 shows the corresponding deviation-

from linearity plots for PBE, PBE/FLO-SIC, and various Xk scaling cor-

rections. The Supporting Information contains additional plots for the

LDA and LDA/FLO-SIC functionals.

4 | CONCLUSIONS

In conclusion, we have provided a new assessment of our FLO-SIC

implementation with an emphasis on its performance for predicting

energies as a function of fractional occupation numbers (FONs) of var-

ious multielectron chemical systems. Within our analysis, we provided

an alternate expression for the FLO-SIC energy gradient expressed in

terms of gradients of Fermi-orbital eigenvalues. This new expression

is particularly interesting and insightful since the gradients of the

Fermi-orbital eigenvalues do not depend on the computationally

expensive evaluation of two-electron integrals and, therefore, could

possibly be used to accelerate future FLO-SIC implementations. To

validate our implementation, we carried out benchmark calculations

on total energies, atomization energies, and ionization potentials for

various atomic and molecular systems. Finally, we calculated energies

as a function of FONs with various SIC-scaling methods to test the

limits of the FLO-SIC formalism on various multielectron chemical sys-

tems, which have not been systematically examined in previous stud-

ies. We find that these relatively simple scaling methods improve the

prediction of total energies of atomic systems as well as enhance the

accuracy of energies as a function of FONs for the carbon atom and

diamine molecular cation. Finally, all of our FLO-SIC implementations

are incorporated in the open-source, massively parallelized NWChem

quantum chemistry software package,[22] which will be publicly avail-

able in the next release update.
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